

CHAPTER 15 LECTURE SLIDES

Prepared by Brenda Leady University of Toledo

To run the animations you must be in **Slideshow View**. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please note: once you have used any of the animation functions (such as Play or Pause), you must first click in the white background before you advance the next slide.

Brooker | Widmaier | Graham | Stiling BIOLOGY

Second Edition

15.1 The Eukaryotic Cell Cycle

- 1. Describe the structure of eukaryotic chromosomes.
- 2. Distinguish between homologous chromosomes and sister chromatids.
- 3. Name the four phases in a eukaryotic cell's life cycle, and briefly describe the events occurring in each phase.
- 4. Describe the events that take place during interphase.
- 5. Explain the importance of checkpoints in the cell cycle.
- Describe the functional relationship between cyclins and CDKs and the importance of these proteins in the regulation of the cell cycle.

15.2 Mitotic cell Division

- 1. Outline the steps involved in the mitotic phase, culminating in the production of two daughter cells.
- 2. Compare cytokinesis in plants and animals.
- 3. Explain why mitotic cell division results in two genetically identical daughter cells.
- Note: This is NOT covered in the PowerPoint. However, you are still responsible for these learning objectives.

15.3 Meiosis and Sexual reproduction

- 1. Describe the events in prophase I that lead to the physical recombination of maternal and paternal genes.
- 2. Compare and contrast the events of metaphase I and anaphase I of meiosis with metaphase and anaphase of mitosis.
- 3. Explain what is meant by "reduction division."
- 4. Compare and contrast the means by which gametes are formed by plants, animals, and fungi.
- Note: Much of this is NOT covered in the PowerPoint (LO2, 3). However, you are still responsible for these learning objectives.

15.4 Variation in Chromosome Structure and Number

 List several different types of alterations in normal chromosome number, and describe some medical conditions that occur as a result.

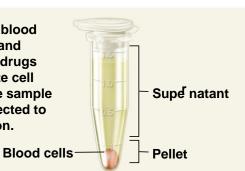
Cell division

- Reproduction of cells
- Highly regulated series of events
- 2 types in eukaryotes
 - Mitosis
 - ☐ Meiosis

Eukaryotic chromosomes

- Cytogenetics field of genetics involving microscopic examination of chromosomes and cell division
- When cells get ready to divide, the chromosomes compact enough to be seen with a light microscope
- Karyotype reveals number, size, and form of chromosomes in an actively dividing cell

Sets of chromosomes

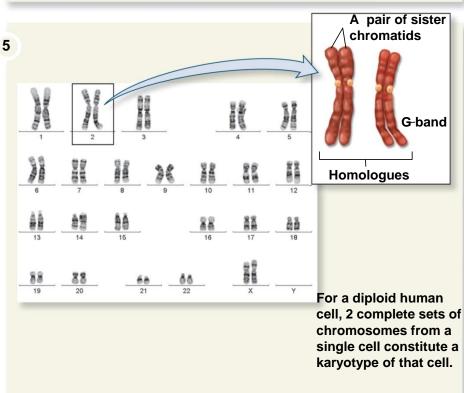

- Humans have 23 pairs of chromosomes or 46 total chromosomes
 - Autosomes 22 pairs in humans
 - Sex chromosomes 1 pair in humans
 - XX or XY
- Ploidy
 - Diploid or 2n humans have 23 pairs of chromosomes
 - Haploid or n gametes have 1 member of each pair of chromosomes or 23 total chromosomes

Homologous

- In diploid species, members of a pair of chromosomes are called homologues
 - They are homologous chromosomes
- Each homologue nearly identical in size and genetic composition
 - Both carry gene for eye color but one may have brown and the other blue
- Sex chromosomes are very different from each other - X and Y differ in size and composition

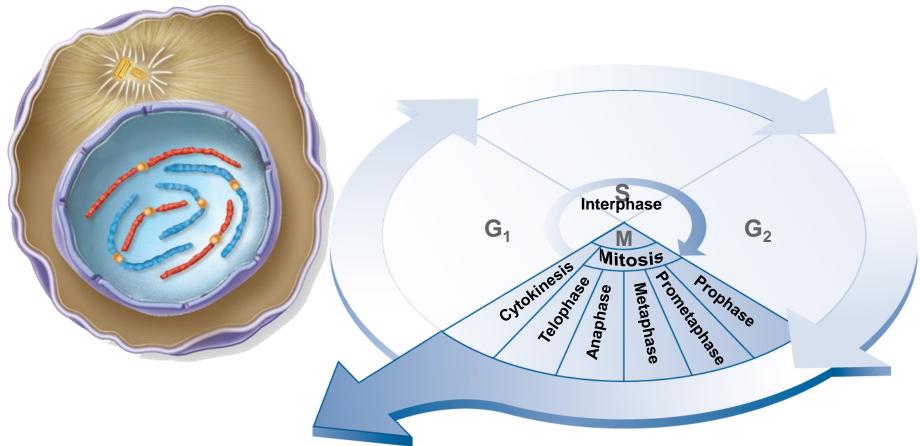
4

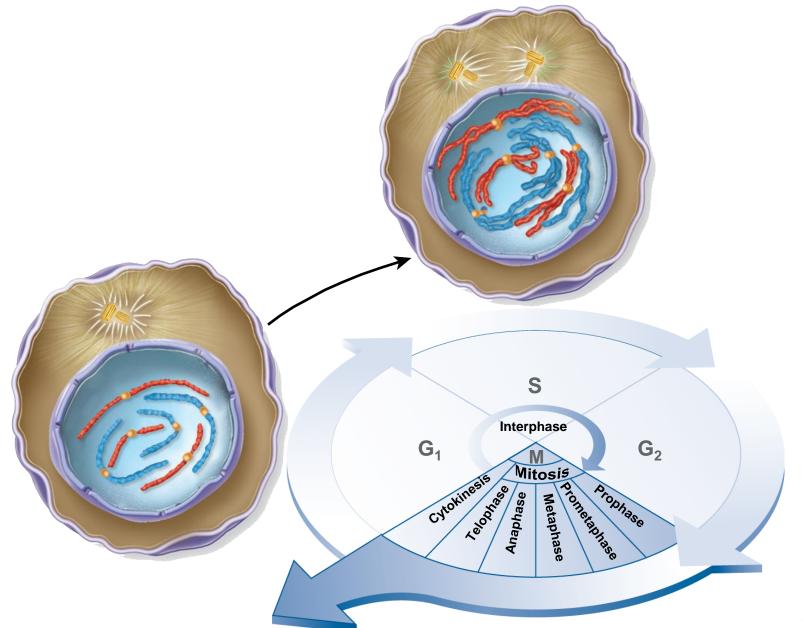
1 A sample of blood is collected and treated with drugs that stimulate cell division. The sample is then subjected to centrifugation.

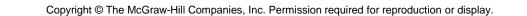

Hypotonic

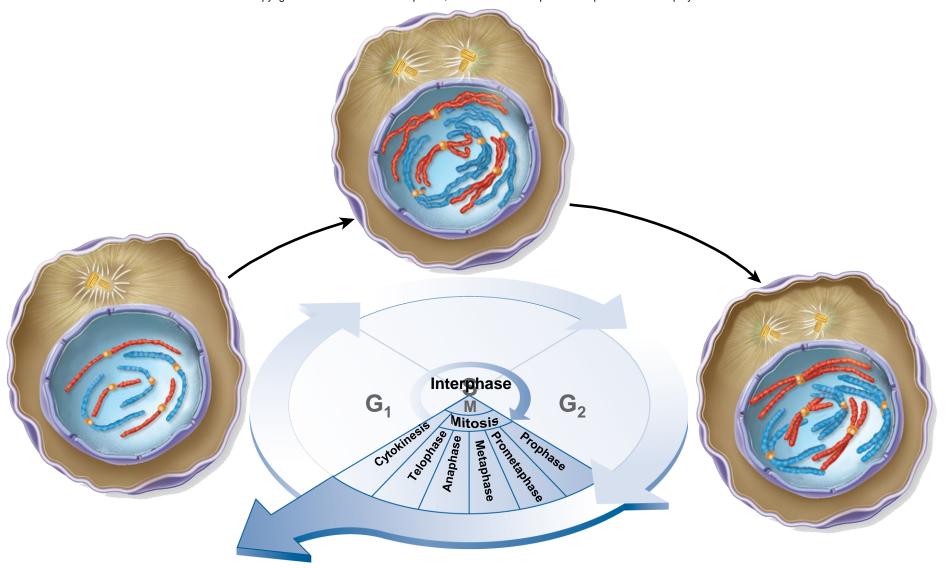
solution

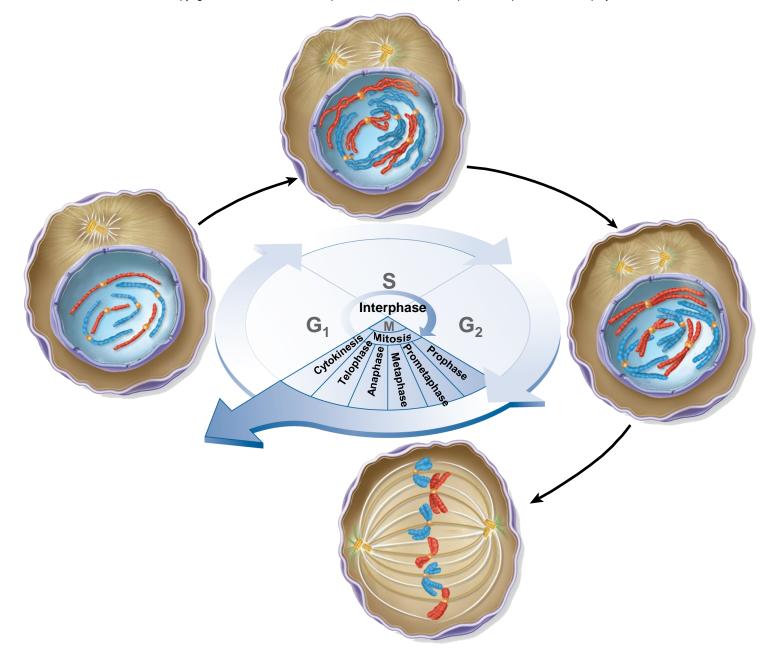
The slide is viewed by a light microscope equipped with a camera; the sample is seen on a computer screen. The chromosomes can be photographed and arranged electronically on the screen.

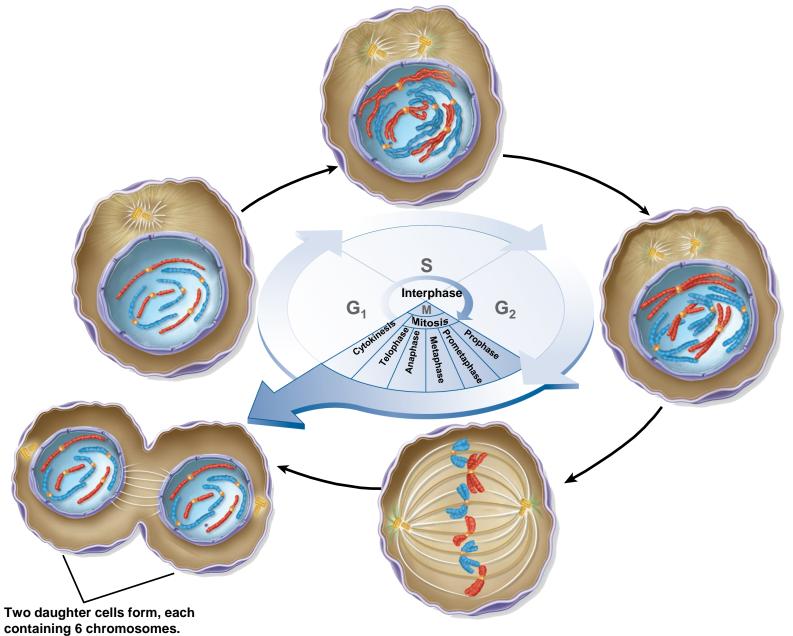

- 2 The supernatant is discarded, and the cell pellet is suspended in a hypotonic solution. This causes the cells to swell and the chromosomes to spread out from each other.
- 3 The sample is subjected to centrifugation a second time to concentrate the cells. The cells are suspended in a fixative, stained, and placed on a slide.

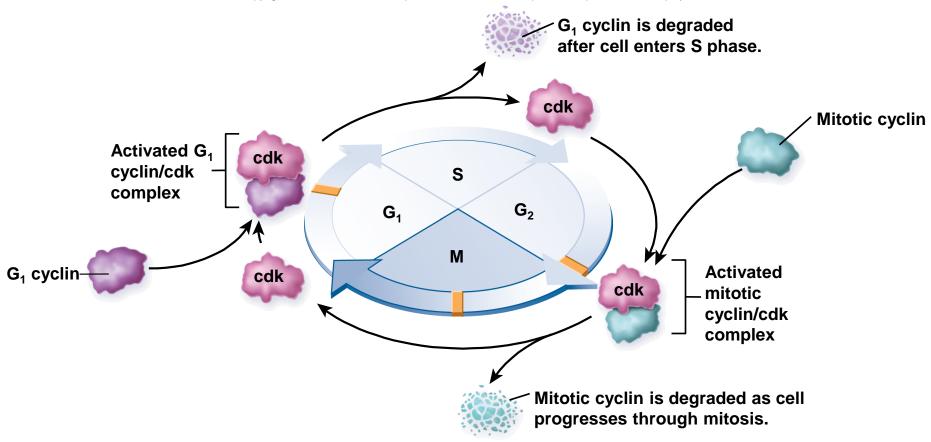



Cell cycle


- G₁ first gap
- S synthesis of DNA \succ Interphase
- G₂ second gap
- M mitosis and cytokinesis


G₀ – substitute for G₁ for cells postponing division or never dividing again



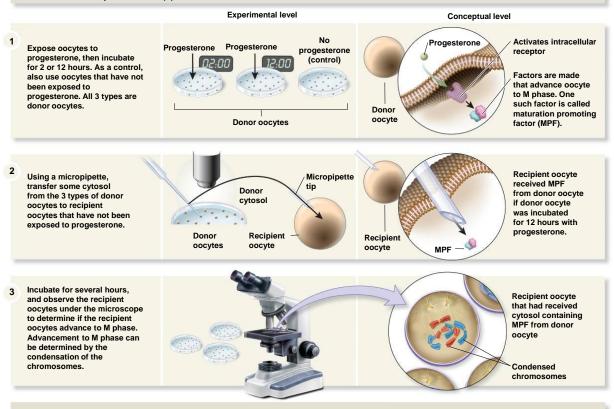


Decision to divide

External factors
 Environmental conditions
 Signaling molecules
 Internal factors
 Cell cycle control molecules
 Checkpoints

Checkpoint proteins

- Cyclins or cyclin-dependent kinases (cdks) responsible for advancing a cell through the phases of the cell cycle
- Amount of cyclins varies through cycle
- Kinases controlling cell cycle must bind to a cyclin to be active


- 3 critical regulatory points or checkpoints in eukaryotes
 - \Box G₁ checkpoint (restriction point)
 - □ G₂ checkpoint
 - □ Metaphase checkpoint
- Checkpoint proteins act as sensors to determine if the cell is in proper condition to divide
- Cell cycle will be delayed or until problems fixed or prevents division entirely
- Loss of checkpoint function can lead to mutation and cancer

Masui and Markert's study of oocyte maturation led to the identification of cyclin and cyclin-dependent kinase

- Frog oocytes are dormant in G₂
- Progesterone makes oocytes progress to M
- Progesterone must be affecting triggers to progress to M
- 3 groups of donor oocytes
 - Progesterone for 2 hours
 - Progesterone for 12 hours
 - □ No progesterone
- Inject donor oocyte cytosol into recipient oocytes
- Only 12 hour donor caused progression
- Maturation Promoting Factor (MPF) is mitotic cyclin and cyclin-dependent kinase

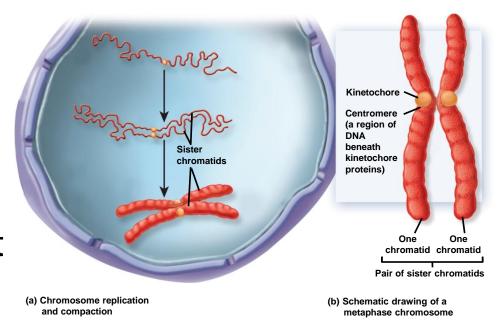
HYPOTHESIS Progesterone induces the synthesis of a factor(s) that advances frog oocytes through the cell cycle from G₂ to M phase.

KEY MATERIALS Oocytes from Rana pipiens.

4 THE DATA

Donor oocytes	Recipient oocytes proceeded to M phase?
Control, no progesterone exposure	No
Progesterone exposure, incubation for 2 hours	No
Progesterone exposure, incubation for 12 hours	Yes

5 CONCLUSION Exposure of oocytes to progesterone for 12 hours results in the synthesis of a factor(s) that advances frog oocytes through the cell cycle from G₂ to M phase.

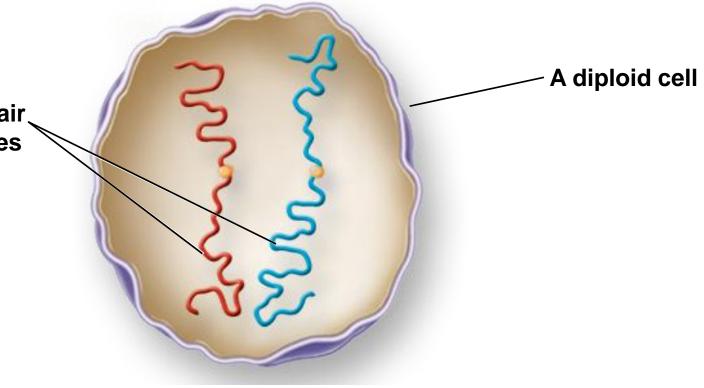

6 SOURCE Masui, Y., and Markert, C.L. 1971. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. Journal of Experimental Zoology 177:129-145.

Mitotic cell division

- A cell divides to produce 2 new cells genetically identical to the original
- Original called mother, new cells called daughters
- Involves mitosis and cytokinesis
- Can be for asexual reproduction or for production and maintenance of multicellularity

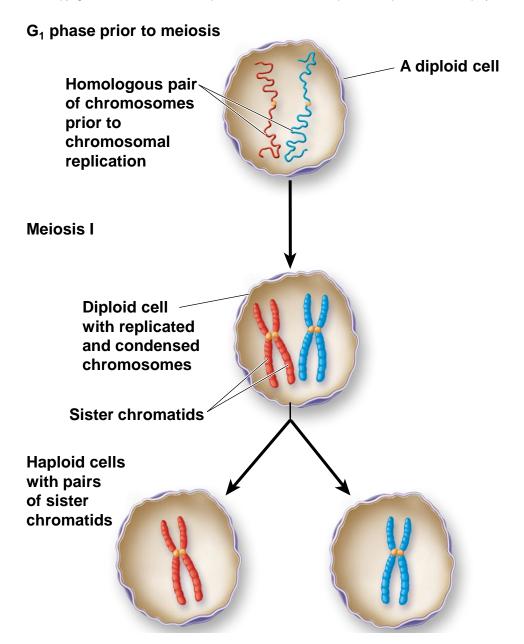
Preparation for cell division

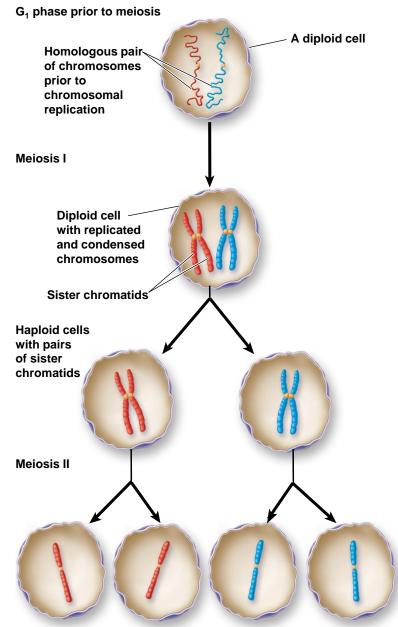
- DNA replicated
- Sister chromatids 2 identical copies with associated proteins
- Tightly associates at centromere
- Serves as attachment site for kinetochore used in sorting chromosomes



Meiosis

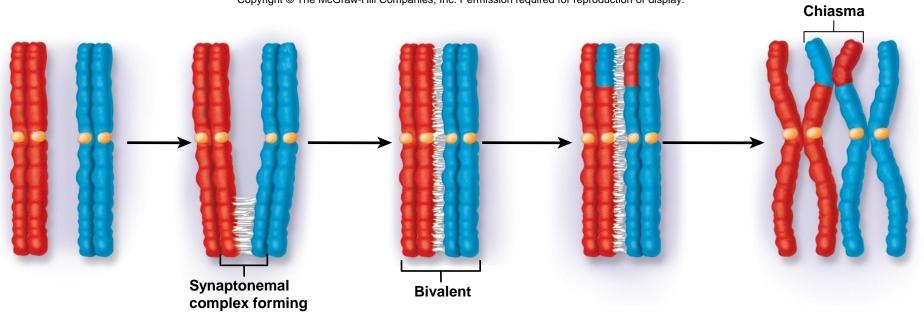
- Sexual reproduction requires a fertilization event in which two haploid gametes unite to create a diploid cell called a zygote
- Meiosis is the process by which haploid cells are produced from a cell that was originally diploid


G₁ phase prior to meiosis


Homologous pair of chromosomes prior to chromosomal replication

G₁ phase prior to meiosis

A diploid cell Homologous pair of chromosomes prior to chromosomal replication **Meiosis I Diploid cell** with replicated and condensed chromosomes Sister chromatids



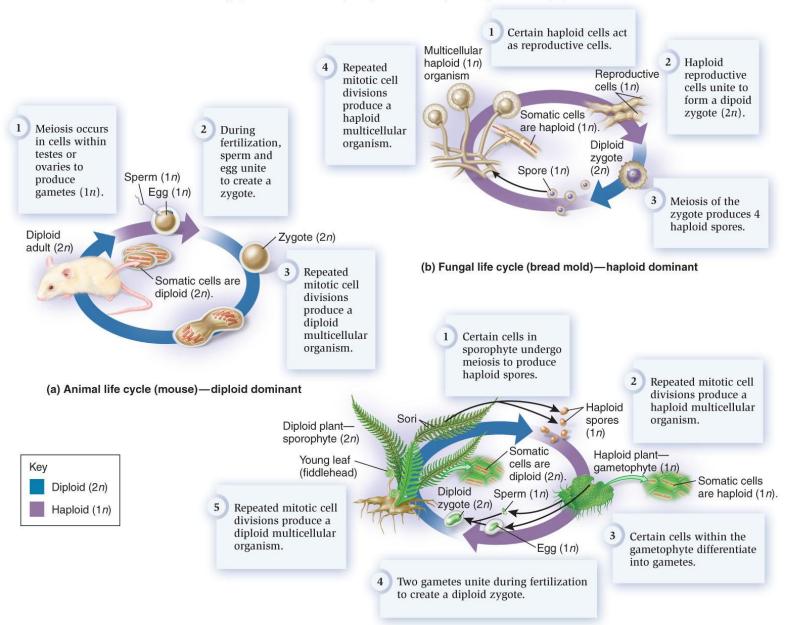
- Like mitosis, meiosis begins after a cell has progressed through the G1, S, and G2 phases of the cell cycle
 - 2 key differences
- Homologous pairs form a bivalent or tetrad
- 2. Crossing over

Crossing over

- Physical exchange between chromosome pieces of the crossing bivalent
- May increase the genetic variation of a species
- Chiasma arms of the chromosomes tend to separate but remain adhered at a crossover site
- Number of crossovers carefully controlled by cells

Meiosis vs. Mitosis

- Mitosis produces two diploid daughter cells that are genetically identical
 6 chromosomes in 3 homologous pairs
 Meiosis produces four haploid daughter cells
 - Each daughter has a random mix of 3 chromosomes


Table 15.1 A Comparison of Mitosis, Meiosis I, and Meiosis II					
Event		Mitosis	Meiosis I	Meiosis II	
Synapsis during prophase:		No	Yes, bivalents are formed.	No	
Crossing over during prophase:		Rarely	Commonly	Rarely	
Attachment to poles at prometaphase:		A pair of sister chromatids is attached to kinetochore microtubules from both poles.	A pair of sister chromatids is attached to kinetochore microtubules from just one pole.	A pair of sister chromatids is attached to kinetochore microtubules from both poles.	
Alignment along the metaphase plate:		Sister chromatids align.	Bivalents align.	Sister chromatids align.	
Type of separation at anaphase:		Sister chromatids separate. A single chromatid, now called a chromosome, moves to each pole.	Homologous chromosomes separate. A pair of sister chromatids moves to each pole.	Sister chromatids separate. A single chromatid, now called a chromosome, moves to each pole.	
End result when the mother cell is diploid:		Two daughter cells that are diploid	_	Four daughter cells that are haploid	

Life Cycle

- Sequence of events that produces another generation of organisms
- For sexually reproducing organisms, involves an alternation between haploid cells or organisms and diploid cells or organisms

Diploid-dominant species Most animal species are diploid Haploid gametes are a specialized type of cell Haploid-dominant species Many fungi and some protists Multicellular organism is haploid Haploid cells unite to form diploid zygote, then proceeds immediately through meiosis to make 4 haploid spores

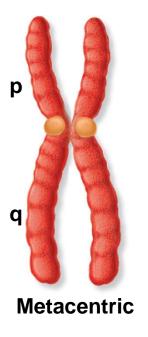
Alternation of generations Plants and some algae Intermediate dominance Multicellular diploid organism – sporophyte Multicellular haploid organism – gametophyte Among species, relative size of sporophyte and gametophyte varies

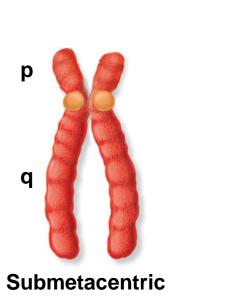
Chromosomes

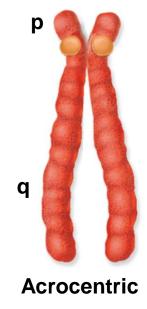
- Geneticists have discovered that variations on chromosomes structure and number can have major effects on organisms
 - Several human diseases
 - Important in evolution of new species
- Chromosome variation
 - On rare occasions, structure or number of chromosomes changes so that individual is different from other members of same species – abnormal
 - Normal for structure and number of chromosomes to vary between species

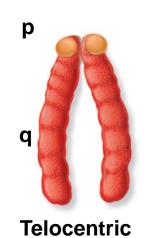
Variation in Chromosomes

Chromosome composition within a given species tends to remain relatively constant
 Humans - 2 sets of 23 chromosomes (total of 46)
 Dog - 78 chromosomes (39 per set)
 Fruit fly - 8 chromosomes (4 per set)
 Tomato - 24 chromosomes (12 per set)


Chromosomes identified by Size

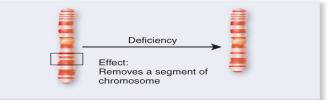

Location of centromere


- Short arm is p, long arm is q, short arms on top
- Metacentric middle
- Submetacentric off center
- Acrocentric near end
- Telocentric at the end

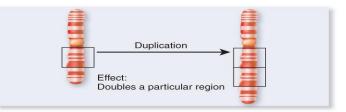

□ Banding pattern

Giemsa stain gives G banding

Chromosomal mutations

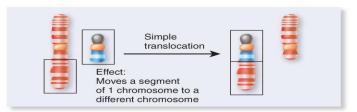

- Deletions
 - Segment missing
- Duplications
 - Section occurs 2 or more times in a row

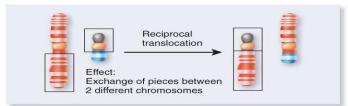
Inversions


Change in direction along a single chromosome

Translocations

- One segment becomes attached to another chromosome
- Simple or reciprocal


(a) Deficiency (deletion)


(b) Duplication

(c) Inversion

(d) Simple translocation

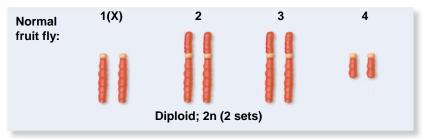
(e) Reciprocal translocation

Changes in chromosome number

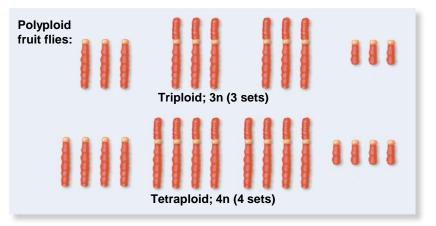
- Euploid chromosome number that is viewed as the normal number
 In a diploid organism, 2 sets is normal
 Polyploid 3 or more sets of chromosomes
 Diploid 2n
 Triploid 3n
 - □ Tetraploid 4n

Aneuploidy

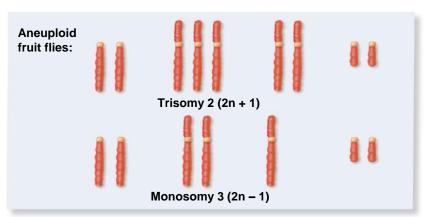
- □ Alteration number of particular chromosomes
- □ Total number not an exact multiple of a set


Trisomic

Normal 2 copies of a chromosome plus a 3rd
 2n+1


Monosomic

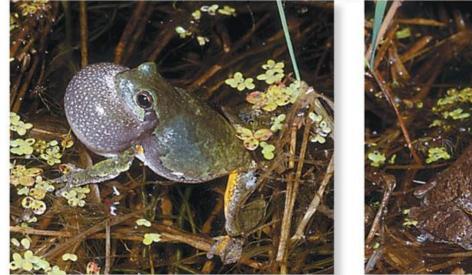
Missing one of normal copies of a chromosome


□2n-1

(a) Normal fruit fly chromosome composition

⁽b) Polyploidy

(c) Aneuploidy


Nondisjunction

- Chromosomes do not sort properly during cell division
- During meiosis can produce gametes with too many or too few chromosomes

Consequences

- Animals do not tolerate deviations from diploidy well – usually lethal
 - However, male bees (drones) contain a single set of chromosomes while female bees are diploid
 - Diploid and polyploid species of amphibians and reptiles
- Plants commonly exhibit polyploidy
 - □ 30-35% of fern and flowering plant species are polyploid
 - □ Important in agriculture Wheat example

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Hyla chrysorelis

(b) Hyla versicolor © A. B. Sheldon

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Wheat, *Triticum aestivum* (hexaploid) © Sylvan Wittwer/Visuals Unlimited

 Aneuploidy in all eukaryotic species usually has detrimental consequences
 Trisomic and monosomic individuals have an imbalance in the level of gene expression interfering with proper cell function

Aneuploidy in humans

- About 5-10% of all fertilized human eggs result in an embryo with an abnormality in chromosome number
- Approximately 50% of all spontaneous abortions are due to alterations in chromosome number
- Can survive some abnormalities
 Trisomies or abnormalities in sex chromosome number

Table 15.2 Aneuploid Conditions in Humans			
Condition	Frequency (# of live births)	Syndrome	Characteristics
Autosomal			
Trisomy 21	1/800	Down	Mental impairment, abnormal pattern of palm creases, slanted eyes, flattened face, short stature
Trisomy 18	1/6,000	Edward	Mental and physical impairment, facial abnormalities, extreme muscle tone, early death
Trisomy 13	1/15,000	Patau	Mental and physical impairment, wide variety of defects in organs, large triangular nose, early death
Sex chromos	omal		
ХХҮ	1/1,000 (males)	Klinefelter	Sexual immaturity (no sperm), breast swelling (males)
ХҮҮ	1/1,000 (males)	Jacobs	Tall
XXX	1/1,500 (females)	Triple X	Tall and thin, menstrual irregularity
ХО	1/5,000 (females)	Turner	Short stature, webbed neck, sexually undeveloped